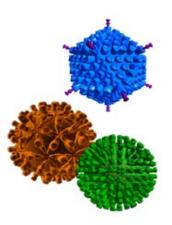
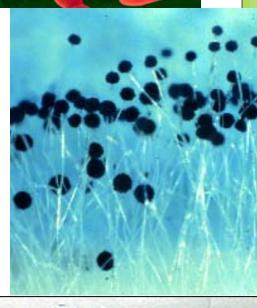
The Immune System

Human Body vs. Microbes

Our 1st Line of Defense...


- The Integumentary System...
 - Skin
 - Mucous membranes
 - Mucous
- provides a physical barrier preventing microbial access


The Invaders . . .

Bacteria

- Viruses
- Parasites
 - Fungi, protists, & worms

Other mechanisms of Defense...

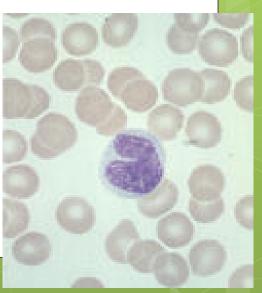
- Physiological variables
 - pH of our environment
 - temperature of our environment
- Chemical defenses
 - o nitric oxide, enzymes, proteins, complement
- AND the IMMUNE SYSTEM...

Immune System: 2 branches

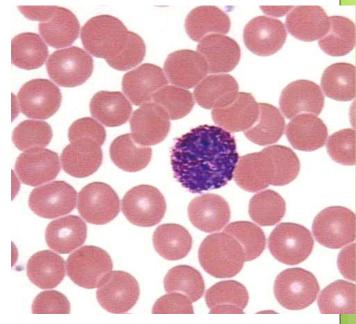
- The Innate Immune system =
 - A general response to anything other than recognized "self cells"
- The Adaptive Immune System =
 - A specific counter-assault against a "known foreign" invader [previously recognized]

Major Concepts -

- What Happens during an infection?
- How can immune cells distinguish foreign invaders from our own cells?
- How can we make 100,000,000 different antibodies with only 30,000 genes?


What Happens during an infection?

- olnnate Immunity the troops are called to battle...
 - Injury & infection
 - Macrophages slip between cells to arrive
 - Cytokine chemicals attract other "troops"
 - Histamine chemicals dilate blood vessels for easier access to injury
 - Innate Immunity http://www.youtube.com/watch?v=d0fgMaQfAQw&feature=player_embedded#!


What are Macrophages?

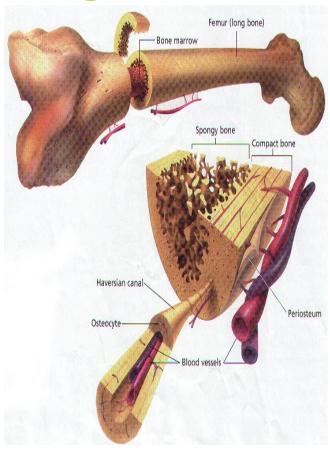
- Phagocytic cells able to ingest small foreign invaders
 - Neutrophils
 - Monocytes
- They release cytokines that enhance the immune response

- Mast cells /basophils
 - Release histamine that dilates blood vessels
 - Causes redness, swelling, and heat/fever

Your Challenge . . .

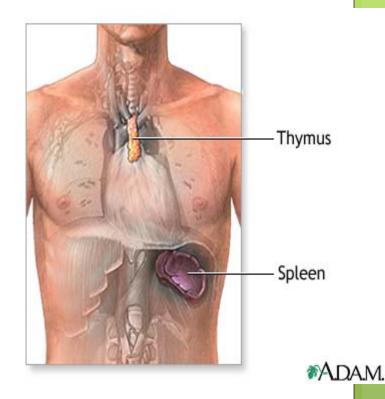
- You are a macrophage in the following game...
- Your mission is to phagocytize the mumps viruses
- Use your mouse on the arrows \leftarrow or \uparrow or \Rightarrow
- HINT: antigens are specialized proteins on cell surfaces that provide I.D. recognition
- http://www.pbs.org/wgbh/nova/aids/immunewave.html

Summary:


- Macrophages are able to launch the first strike...
- More help is needed to overcome rapidly reproducing invaders...
- Help from the ADAPTIVE IMMUNE System, which results in a coordinated successful defense!
- Major players . . . the B lymphocytes

How can antibodies distinguish our self from foreign invaders?

- Adaptive Immune System
- There are 2 types of lymphocytes:
 - T lymphocytes (Helper T Cells) help signal immune cells into action
 - B lymphocytes (B Cells) make special proteins called antibodies


How can antibodies distinguish "self" cells from foreign invaders?

- Adaptive Immune System
- As you recall, there are 2 types of lymphocytes:
 - 1st Type (Helper T)
 - Begins in bone marrow

Helper T Cells then migrate to the thymus gland ...

- They are sorted into 2 types:
 - Identification tag is a protein called Major Histocompatability Complex (MHC)

Foreign

Self- ID

& in the thymus gland . . .

- All diversely varying MHC lymphocytes will wait for a call to action . . .
- All "self" MHC cells are destroyed to remove the chance of "friendly fire" casualties

Foreign
Saved to be
educated... in
body defense

Dropped out!

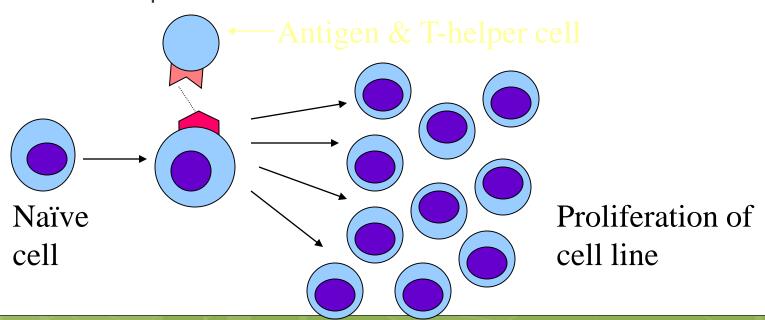
• These Lymphocytes will mature into T-Helper cells

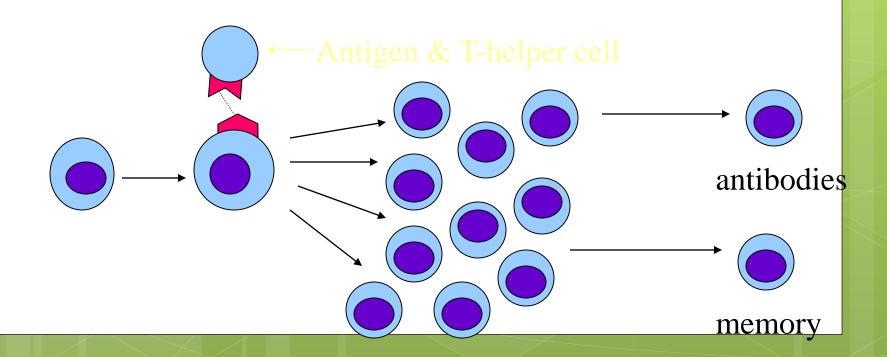
 They function to stimulate B cells to activate their attack against the invaders

Adaptive Immune System

- The 2nd type of lymphocyte is:
 - B lymphocytes (B Cells) start in the bone marrow and circulate through the body
 - They are called into action when stimulated by a foreign antigen. . .
 - Usually a protein from the invader

When an invader attacks. . .


- An antigen is phagocytized ('eaten') by the B cell
- Invader is then broken into non-infective pieces
- Pieces attached to the cell's MHC when processed through the cell machinery
- MHC-antigen complex is placed on the cell membrane surface
 - Where it is recognized by the T Helper cell
- Animation: Antigen Expression Process http://www.nature.com/nrm/journal/v2/n3/animation/nrm0301_179a_swf_MEDIA1.html


When help arrives . . .

- The T-helper cell receptor "docks" with the B cell's MHComplex
- B cells proliferate . . .

B cells differentiate into . . .

- Antibody producing cells (attack mode)
- Memory cells (future protection from same invader)

The RESULT . . .

- The Antibody producing B cells mounts a successful attack against the invader
- Memory B cells save the "recognition ID" for many years in preparation for future invasion

How can we make 100,000,000 different antibodies with only 30,000 genes?

- Problem:
 - Microorganisms easily out-number the total number of genes on the human genome
 - If only one gene was responsible for coding for one antibody, there still wouldn't be enough information to use
- Question:
 - How can such a small amount of information be used for successful antibody diversity?

Consider the following . . . What is true about the different cells of the body?

- Which Statement is most correct?
 - a All cells in the body are the same and function the same way
 - b All cells are the same, but function differently because they are located in different places
 - c All cells have the same genetic material, but different cells use different active genes to make them function differently
- Does this same principle apply to antibodies ?

The correct answer is . . .

c All cells have the same genetic material, but different cells use different active genes to make them function differently

Summary

- What Happens during an infection?
 - The immune system activates a multitude of characters to defend the body in a variety of ways
 - Several players work together, feedback systems enhance or suppress functions as changes occur

Summary

- How can immune cells distinguish foreign invaders from our own cells?
 - By using the invader's own antigen, immune cells can be produced for specific organisms & used to enhance the defense effort

Summary

- How can we make 100,000,000 different antibodies with only 30,000 genes?
 - Mixing & matching pieces of genetic material produce huge numbers of antibodies
 - As well as very specific antibodies
- The immune system is well equipped to defend the human body against the daily onslaught of microorganisms . . . If everything goes as planned . . .

For further information . . .

- Immunology Project Resources –
- Understanding Autoimmune Disease
- http://www.niaid.nih.gov/publications/autoimmune/work.htm
- Antibody descriptions [IgG, IgM, IgA]
- http://sprojects.mmi.mcgill.ca/immunology/lg_text.htm
- Immunology Hyperlinked History & Molecular Movies
- http://www.bio.davidson.edu/courses/Immunology/Bio307.html
- Nature Magazine & Immunology
- http://www.nature.com/nature/view/030102.html
- NCBI Genome Database
- http://www.ncbi.nlm.nih.gov/
- NCBI Genome Base
- http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids= 1589796
- Immune System Animation Links through Anatomy & Physiology Groups
- http://science.nhmccd.edu/biol/ap2int.htm
- Pier,G., Lyczak,J., Wetzler,L; Immunology, Infection, and Immunity; American Society for Microbiology Press, 2004, p. 12.