Protein Synthesis Problems

Use the same DNA kits as we did for DNA Replication to complete this page. You will also need to use the mRNA codon chart on this page to determine which amino acids correspond to which codon sequence.

mRNA Codon Chart:			
A A U Asparagine	C A U Histadine	G A U Aspartic acid	U A U Tryosine
AAC	CAC	GAC	UAC
A A A Lysine	C A A Glutamine	G A A Glutamic acid	U A A Stop
AAG	CAG	G A G	U A G
ACU	CCU	GCU	UCU
A C C Threonine	C C C Proline	G C C Alanine	U C C Serine
ACA	ССА	G C A	UCA
ACG	CCG	GCG	UCG
A G U Serine	CGU	GGU	U G UCysteine
AGC	C G C Arginine	G G C Glycine	UGC
A G A Arginine	CGA	G G A	U G A Stop
AGG	CGG	GGG	U G GTryptophan
AUU	CUU	GUU	U U UPhenylalanine
A U C Isoleucine	C U C Leucine	G U C Valine	UUC
AUA	CUA	GUA	U U ALeucine
A U G Methionine	CUG	GUG	UUG

PART A: Transcription (this takes place in the nucleus)

1. Build the following DNA molecule using your DNA kits just like we did last time:

left rail (blue)	TTCGCGCTACGAATTACGTATCCCTAA
right rail (yellow)	AAGCGCGATGCTTAATGCATAGGGATT

- 2. Act as the enzyme DNA Transcriptase, and "unzip" your DNA molecule (i.e. prepare it like you did for DNA replication).
- Use the RNA nucleotides (pink phosphate, <u>ribose</u> sugar, base) to transcribe an mRNA molecule using the right (yellow) rail of DNA.
 <u>Record the sequence of bases in this mRNA below:</u>
- 4. Carefully slide your mRNA (pink) away from the DNA (i.e. out of the nucleus and to a ribosome) and reform your original DNA molecule. Keep this DNA for future use.

PART B: Translation (this takes place at the ribosome)

5. Your role will be to act as a ribosome, translating mRNA from left to right. Use your table of mRNA codons and prepare the appropriate tRNA molecules (either blue or green, but labeled tRNA), and the amino acid they will carry (using the mRNA codon chart). Continue to build the amino acid sequence. <u>Record the amino acid sequence below:</u>

Try to complete this section <u>without</u> your DNA kits, as you will not have them for the quiz. You will never have to memorize the mRNA codon chart.

mRNA Codon Chart:

A A U Asparagine	C A U Histadine	G A U Aspartic acid	U A U Tryosine	
AAC	CAC	GAC	UAC	
A A A Lysine	C A A Glutamine	G A A Glutamic acid	U A A Stop	
AAG	CAG	GAG	UAG	
ACU	ССИ	GCU	UCU	
A C C Threonine	CCC Proline	G C C Alanine	U C C Serine	
ACA	ССА	GCA	UCA	
ACG	CCG	GCG	UCG	
A G U Serine	CGU	GGU	U G UCysteine	
AGC	C G C Arginine	G G C Glycine	UGC	
A G A Arginine	CGA	GGA	U G A Stop	
AGG	CGG	GGG	U G GTryptophan	
AUU	СUU	GUU	U U UPhenylalanine	
A U C Isoleucine	C U C Leucine	G U C Valine	UUC	
AUA	CUA	GUA	U U ALeucine	
A U G Methionine	CUG	GUG	UUG	

6. Try an example without your DNA model:

DNA <i>left</i>		CGTAACGCGCGAATCGCGATC			
	right	GCATTGCGCGCTTAGCGCTAG			

- a. Transcribe the left rail of DNA and record the mRNA that is produced.
- b. Translate the mRNA (using the table of mRNA codons & amino acids) and record the amino acid sequence that this gene codes for.
- c. Use the mRNA and amino acid sequence from above (6. b) and determine the tRNA anticodons that would be used to transport the amino acids.

DNA – left rail	CGT	A A C	GCG	C G A	A T C	GCG	АТС
mRNA codons							
Amino acid							
tRNA anticodons							

PART C: Mutation – Use your DNA kit to help with this question

- 1. A mutation is defined as any change in the base pairs of a gene.
- Use the DNA molecule from question 6 above. Reading from left to right, mutate the gene by removing the first T A base pair that you find.
 Record the new DNA sequence below:
- b. Acting as the enzyme DNA transcriptase, "unzip" your DNA molecule.
- c. Use the RNA nucleotides to transcribe a mRNA to the left rail of DNA. <u>Record the mutated sequence of bases in this mRNA below:</u>
- d. Carefully slide your mRNA away from the DNA (out of the nucleus) and reform your original DNA molecule.
- e. Your role will be to act as a ribosome, translating mRNA from left to right. Use your table of mRNA codons and prepare the appropriate tRNA molecules and the amino acid they will carry. <u>Continue to build the amino acid sequence and record this sequence below:</u>
- 2. Describe (in general terms) how a mutation may affect the amino acid sequence of a protein being synthesized.
- 3. Do you think that all mutations will alter the amino acid sequences of the protein being synthesized (Hint: Look at the mRNA codon chart...)? Why?

PART D: Mapping Genes

Geneticists are often claiming that they have found the gene for a particular trait or disease. These geneticists can determine the base pairs of a gene if they know the amino acid sequence of the protein it codes for (i.e. they work backwards using the codon charts to map DNA).

Given the amino acid sequence for a portion of a protein, determine the DNA or portion of the gene that codes for this protein.

phenylalanine - glutamine - arginine - arginine - leucine - threonine - arginine - glycine								
mRNA	UU C	C A G	CGG	CGU	СИС	ACA	C G A	GGG

DNA