Science 10

Name:

Balancing Equation Activity

Using the cards for each equation, determine how many of each reactant and product are required to balance the number of atoms on each side of the equation.

1. Fe + $Cl_2 \rightarrow FeCl_3$

Word equation:

2. Fe + \bigcirc \bigcirc \bigcirc Fe₂O₃

Word equation:

3. $N_2 + M_2 \rightarrow NH_3$

Word equation:

4. ___Li + ___AlCl $_3$ \rightarrow ____LiCl + ___Al

Word equation:

5. $\underline{\hspace{1cm}} Ag_2O \rightarrow \underline{\hspace{1cm}} O_2 + \underline{\hspace{1cm}} Ag$

Word equation:

6. $\underline{\quad}$ CuCl₂ + $\underline{\quad}$ Fe \rightarrow $\underline{\quad}$ FeCl₃ + $\underline{\quad}$ Cu

Word equation:

7. $\underline{\hspace{1cm}} H_2O_2 \rightarrow \underline{\hspace{1cm}} H_2O + \underline{\hspace{1cm}} O_2$

Word equation:

8. $\underline{\hspace{0.5cm}}$ Br₂ + $\underline{\hspace{0.5cm}}$ AlCl₃ \rightarrow $\underline{\hspace{0.5cm}}$ AlBr₃ + $\underline{\hspace{0.5cm}}$ Cl₂

Word equation:

9. $\underline{\hspace{0.5cm}}$ Cu Cl₂ + $\underline{\hspace{0.5cm}}$ AgNO₃ \rightarrow $\underline{\hspace{0.5cm}}$ Cu(NO₃)₂ + $\underline{\hspace{0.5cm}}$ AgCl

Word equation:

10. $\underline{\hspace{1cm}}$ KNO₃ \rightarrow $\underline{\hspace{1cm}}$ KNO₂ + $\underline{\hspace{1cm}}$ O₂

Word equation: